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Abstraet--A theoretical analysis has been made of heat transfer enhancement due to bubbles passing 
through a narrow vertical channel. The mechanism of enhancement for a constant heat flux is: heat is 
first transported by a latent heat of evaporation on the bubble interface covering the heated surface and 
is followed by sensible heating of the succeeding liquid. The latent heat transport is calculated using an 
integral method and the sensible heating is determined exactly. For low heat fluxes, the calculated heat 
transfer coefficients are in fairly good agreement with the experiments; at high heat fluxes, however, the 
calculated values are approximately half the experimental values, since flow along the heated surface is 
not taken into account. 
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1. I N T R O D U C T I O N  

Heat transfer is markedly enhanced when bubbles generated on a heated surface in a narrow space 
pass through the gap under conditions of bubble or slug flow (Ishibashi & Nishikawa 1960; 
Nakashima 1978; Kusuda et al. 1981; Monde et al. 1986, 1988; Monde 1988, 1989). The mechanism 
of  the enhancement can be explained from two different points of  view: first, the transient thermal 
conduction model by Ishibashi & Nishikawa (1960) in which 70% of  the total heat transfer is 
transported by convection and the remainder by latent heat; and second, the evaporation model 
by Nakashima (1978) that states that the thermal transport is mainly by evaporation of  the liquid 
film which appears when a bubble passes by the surface. 

In the first model it is assumed that the surface temperature remains constant in spite of the 
temperature fluctuations caused by passing bubbles. In addition, the analysis differs from reality 
because evaporation of  the surface liquid film depends on the heat flux and bubble frequency. These 
effects should cause differences between theoretical and experimental results. On the other hand, 
the second model derives a correlation predicting the heat transfer coefficient, h', for a mean 
duration time of  tb = 0.0205 S, during which the passing bubbles cover a heated tube, based on the 
assumption that the liquid film is between 28-47 lam thick. 

Kusuda et al. (1981) measured the temperature change of  the heated surface due to the passing 
bubbles by using an  electrically heated stainless steel foil as the heated surface. They proposed an 
enhancement model based on the relationship between the change in the surface temperature and 
the period of the passing bubbles. Although comparison of  the theoretical and experimental results 
was made based on the assumption that the thickness of  liquid film was 50/zm, the mechanism 
of  enhancement could not be discerned. 

Recently, Monde (1989) has measured the thickness of  the liquid film when a bubble passes 
through a narrow vertical rectangular channel. Monde et ai. (1989) have also clearly determined 
the basis of  the enhancement in a subcooled liquid, and thus, without evaporation, based upon 
a theoretical result proposed by Monde (1988). 

The present study will account for both the effects of  evaporation and convection on the basis 
of the change in the heated surface temperature during one cycle of  the passing bubble. The 
theoretical results will be compared with the experiments. 
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Figure 1. Temperature change of the heated surface due to the passing of a bubble during one cycle: 
(a) AT~u b = 0 K; (b) AT~ b = 70 K. 

2. THEORETICAL ANALYSIS AND ITS SOLUTION 

The model of Kusuda et al. (1981) for heat transfer enhancement, will first be briefly explained. 
This model is based on the assumptions that: (i) most of the superheated liquid is swept away by 
the bubble passing along the heated surface; (ii) a stationary thin liquid film always remains 
between the heated surface and the passing bubble, however evaporation from its surface can be 
ignored; and (iii) the stationary liquid at the bulk temperature immediately covers the heated 
surface after the bubble passes. Based on these assumptions, the problem can be treated as heat 
conduction in a semi-infinite solid, since the thickness of the remaining liquid film is very thin 
compared with the width of the narrow space; namely, the ratio of its thickness to its width is less 
than one-tenth and the value of ~ 0 0  is on the order of 10 -4 m, where a is thermal diffusivity and 
To is the period of the passing bubble. In a recent study by Monde (1988), using the Kusuda et 
al. model, the characteristics of the solutions for two special cases of heated surfaces with a constant 
heat flux and a constant temperature are developed, including the two limiting states of 6 
(=  So/w/~oo; S0--initial thickness of the liquid film) = 0 and ~ .  

The recent experiments by Monde et al. (1986, 1989), show that the temperature changes in the 
heated surface during one cycle, differ significantly for the saturated and subeooled liquid cases 
[figures l(a,b)]. In the saturated liquid the temperature suddenly drops immediately the bubble 
reaches the heated surface, while in the subcooled liquid the temperature rises. This difference in 
behavior results from the evaporation of the liquid film on the interface when the bubble covers 
the heated surface. The present study, therefore corrects the Kusuda et al. (1981) model by 
attempting to account for the evaporation as follows: the heated surface is first cooled by 
evaporation for the time duration from t = 0 to tb during which it is covered by the passing bubble; 
liquid from the saturation liquid flows into the space immediately after the bubble passes, as shown 
in figure 2. Flow along the heated surface is ignored, as in Kusuda et al. (1981). The resulting 
analysis is made up of two parts: (I) latent heat transport by evaporation; and (II) sensible heat 
transport by liquid. 

(I)  Latent  heat transport by evaporation (0 < t < tb) 

The basic equation in the liquid film during 0 < t < tb is 

c~T 02T 
p c -~-~ = 2 O x----- 5, [1] 

with the boundary conditions 

dT 
- 2 - : -  =qw.  x =O, t > 0 ,  [2] 

¢7X 



ENHANCEMENT OF HEAT TRANSFER BY BUBBLE PASSAGE 805 

TW' T W ~ ~  T t increase 

v 

So S O 
X X 

Figure 2. Physical model for enhancement. 

and 

T = Tsat, x = S( t ) ,  t > 0, [3] 

OT d S  
~. ~X -- phLG -~ ,  x = S ( t ) ,  t > 0 ;  [4] 

where p is the liquid density, c is the specific heat of  liquid, 2 is the thermal conductivity, hLG is 
the latent heat of  evaporation, Tis temperature of the liquid film, T,~t is the saturation temperature, 
qw is the heat flux at the heated surface, S ( t )  is the thickness of liquid film and x is distance from 
the heated surface. Equation [4] represents the energy balance on the interface. The resulting 
non-linear equation makes an exact solution difficult and requires an approximate method of 
solution. An integral approximation of  [1] together with [2]-[4], results in 

d r s(') dS 
J0 p c ( T  - T.t) dx  = qw + phLG -'~. [5] dt 

An approximate temperature distribution in the liquid film based upon a second-degree polynomial 
in x, and assumed with coefficients which satisfy [2] and [3], yields 

phLG "~ "k qw 
T(x ,  t )  - T~t = - 

qw 
22S ($2 - x2) + ~ (S - x).  [6] 

By substitution of [6] into [5] and rearranging, a non-linear ordinary differential equation in terms 
of the thickness of the liquid film results, i.e. 

dt 2 

with the initial conditions 

and 

d'S \ dr] 
S 

aqw 
- -  + 3a - -  +3ph-~-~s2=O, [7] 

d S ( 0 ) =  q~ _ 2  , 2 , ,  (T~o-T~t) .  [91 
dt phLo pnLG ')0 

s (o )  -- so [81 
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This may be made non-dimensional by substituting the parameters (¢1, z, 6j, ~, 0): 

phLo So -~z 

So + q~ qw So 
0(~ ,  z) = 2),(Two - Tsar)61 To (612 - ~ )  "4 2(T~ - T=t) 

(d61  
d261 2 {d61~2 \ d z  / 3`41A2 drY+~\-d-~'T} + ( 3 ` 4 1 - A z 6 ' ) W +  6~ = 0 ,  

61(0) ---- 1 

and 

where 

(61 - -  ~1),  [10] 

d61 (0) 
dz = A2-A3 ,  

aTo 
Am = So 2 , 

qwTo 
.4 2 (phL 0 So ), 

[11] 

[12] 

[13] 

22 (T , , , o -  T~at)To 
A3 (phLG Sg) ' 0 = 

( T -  T~t) 

(T~o- T~,,)' 

x t 

~1 = S o '  z =T00 '  

S ( t )  

SO 

The solution for 61,0 < T < a (= tb/To) can be determined using the Rungc--Kutta-Gill procedure. 
The temperature distribution and the heated surface temperature can then be calculated as 

so ] 
0w(0, z) = 22(T,.o - T.t) [_ ~-o q,,, 61. [14] 

The temperature distribution at T = at, when the bubble passes the heated surface, becomes 

So ~ qwso (6b - ~,), 
0(¢1' ~) = - 22(Two - T,,t)fb L To + q" (6~ - ~ )  + 2(T~o - T,~t) 

where 6b is the non-dimensional film thickness at ¢ = a. 

(II) Sensible heat transport by liquid (to < t < To) 

In the liquid, heat conduction for the time interval of tb < t < To becomes, for 0 < x : 

OT . O2T 
pe ~7 = 2 Ox 2, 

with the boundary conditions 

dT 
- 2 7 - -  =qw, x = 0 ,  

ox 

T = T~t , x ---~ oo , 

[15] 

[161 

[17a] 

[17b] 
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and the initial conditions at t = tb, 

T(x, t) - Tsa t = 0(¢1, a)(T~o -- T.t), 0 < x < S 2, [18a] 

T(x, t) = T~t, $2 < x,  [18b] 

where $2 is thickness of the liquid film at t = tb. 
Non-dimensional equations result by substituting the non-dimensional parameters (¢5, ~, 62) into 

[16]-[18], i.e. 

and 

dO a~0 
0 < ¢2, ~ < T < 1, [19] 

aT a¢~, ' 

60 [ - B ~ ,  ¢5= o 
[201 

a¢2 o, ~2 --, oo 

0 ( ~ 2 ' a ) = { ~ !  ~ ' ' a ) = f ( ¢ 2 ) '  52 0<¢2<52< ~2, 

where f (¢2)  in [21] can be obtained by rearranging [15] in the form 

f (¢2)  = -- B2¢~ -- B, ¢5 + (B26~ + B, 62), 

and 

[21] 

[22] 

Bi = qw x//-~° 
[2 (T~o-  Tat)]' 

a [ [d~_%~l + q'T°l, 
B2= - 22(T~o- T.t)a b phL° \  dz ] So J 

and 

X 

¢2=T~ ° 

& 

The solution of [19] that satisfies [20] and [21] is given by [23]. The resulting temperature of the 
heated surface is given by [24]: 

- [(~ /'5~ + ~'~ 

M,F. 15/~....-I 
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Figure 3. Relationship between the non-dimensional residence time and the period of the passing bubble. 

and 

Ow(Z2)=(B2t~2+Bi){2/~exp[ -(~2)2-]-~z2 J + ~2 err(k2x/z2/j-62-~ 2B:2erf(f:_.~,k2~/z2/ [24] 

where z: in [23] and [24] is z2 = z -c t .  
In order to complete the calculations, it is necessary to know the initial thickness of the liquid 

film, So, the non-dimensional residence time of the bubble, ~t, and the initial temperature of the 
heated surface, Two. 

The initial thickness and the non-dimensional residence time can be determined from analysis 
of the flow pattern of the bubble passing through the channel. According to the work of Monde 
0989), the thickness of the liquid film while the bubble passes through the channel, So = 71.7 #m, 
is independent of the bubble period To( = 0.1-1.0 s) and bubble length/b(= 0.01-0.03 m). A value 
of So = 71.7 #m is therefore adopted. 

The non-dimensional residence time can be determined from the velocity and bubble length of 
the rising bubble, as in the experiments (Monde et al. 1988). 

Figure 3 shows the values of  ct plotted against period for To = 0.033-1.0 s. The relation between 
at and To may be obtained in this region as 

= CTo °'~ , [25] 

where 

C = 0 . 1 5  for / b f 0 . 0 3 m  
0.10 0.02 
0.071 0.01. 

The initial temperature, Two, is however still unknown, but can be determined from the periodic 
condition in an iterative fashion: first the numerical calculation is performed by providing an 
estimated initial value for Two, yielding [15] and a temperature at t = To, namely ~2 = 1 - ~t can be 
calculated from [24]. This procedure is continued until the difference between the calculated and 
the assumed values becomes < 10 -3. 

3. T H E O R E T I C A L  RESULT 

3.1. Change of liquid film thickness during evaporation 
Figure 4 shows the relationship between the non-dimensional liquid film thickness and the time 

period of evaporation. It is seen that the thickness decreases sharply during the time period ~ = 0 



ENHANCEMENT OF HEAT TRANSFER BY BUBBLE PASSAGE 8 0 9  

1.0 
Water To=l s 

l b - 0 . 0 3  s 
.15 

-- qw=l.3xl04 Wlm 2 

% --. qw.5Xl04 W/m 2 

0 , 9  0 . 1  a O. 

i 

Figure 4, Variation of film thickness during interface evaporation. 

to about 0.25~. It then gradually decreases, corresponding to the situation that the heat transferred 
from the heated surface to the interface is consumed by the evaporation at the interface. This 
condition also means that the temperature distribution in the liquid film is linear. 

3.2. Temperature change of the heated surface during one cycle 

Figure 5(a) shows a typical temperature change of the heated surface caused by the passing of 
a bubble (lb = 0.02 m) at a heat flux of qw = 1.3 x 104 W/m 2 during one cycle. Figure 5(b) shows 
the typical temperature change for the period T0--0.25 s also at qw= 1.3 x 104W/m ~. The 
non=dimensional residence time in figure 5 can be calculated from [25]. 

It is seen from figures 5(a, b) that the temperature of the heated surface sharply drops during 
the time of z = 0 to ~ = 0.25o( and then gradually decreases until z = ~. The temperature change 
corresponds to the decrease in the liquid film thickness since the heat transferred from the heated 
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Figure 5. Temperature change of the heated surface during one cycle (theoretical result): (a) effect of 
period; (b) effect of bubble length. 
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surface is controlled by the evaporation of  the liquid film on the interface. After the bubble passes, 
namely z > ~, the temperature gradually recovers. In figure 5(a), the temperature change is not 
critically dependent on the period, bringing about the increase in ~ and at last disappears below 
a certain period. From figure 5(b), the temperature recovery is delayed as ct increases with the 
increase in the bubble length. 

3.3. Time-averaged heat transfer coefficient 
A time-averaged heat transfer coefficient can be defined as 

1 f. r0 qw dt. 
~- = T00 ov T w ( t ) -  T~at 

The non-dimensional heat transfer coefficient ]~x~o/k can be introduced to give 

[;i So'- ] [; - = Bi Owl(T) dz + 0w' (z2) dz2 • 

[26] 

[27] 

The non-dimensional temperatures 0w(Z) and 0w(z2) are given by [14] and [24], respectively so that 
the value of  [ i ~ o / k  can be calculated numerically. 

Figure 6 indicates the heat transfer calculated from [27] as a function of  6; 6 = So/x~o.  The 
scale of To is chosen as the value of  To for water, calculated from 6 = So/x/aTo using So = 71.7 #m. 
The thin solid line represents the limiting solution without evaporation (e( = 0), while the dashed 
line is the limiting solution (~ = 1) under which the temperature change of  the heated surface does 
not occur and the flow pattern becomes one of  annular flow. In addition, this situation will appear 
for 6 > 3. In the region above the - - - - -  line in figure 6, experimental results are difficult to obtain. 

Figure 7 shows the relationship between [;ff~oo/k and ~. It is seen that evaporation has 
a significant effect on the heat transfer as the residence time ~ becomes small. The heat transfer 
becomes independent of  • at 6 = 0.8 due to the fact that the enhancement of  the heat transfer has 
reached an upper limit. 

Figure 8 illustrates the ratio of  evaporation heat transport to the total amount of  heat transport 
during one cycle plotted against non-dimensional residence time, 0~. It can be seen that the amount 
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Figure 6. Dimensionless heat transfer,/~x/~o/k, as a function of dimensionless film thickness, 6 -- So/~/aTo 
(theoretical result). 
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Figure 7. Dimensionless heat transfer, /~x/~0/2, as a function of dimensionless residence time, a. 

of the heat transported by the evaporation increases with the increase in ~t and more than half of 
the total amount is transported for ~t > 0.32 by evaporation. 

4. C O M P A R I S O N  O F  T H E  T H E O R E T I C A L  A N D  E X P E R I M E N T A L  R E S U L T S  

4.1. Temperature change of  the heated surface during one cycle 

Figures 9(a, b) represents a typical temperature change during one cycle. The thick solid lines 
in figures 9(a, b) are the experimental results of Monde et al. (1986, 1988) and the thin solid lines 
are the calculated ones. Figure 9(a) shows that both results are in a good agreement for low heat 
flux (q, = 1.3 x 104 W/m2); there are however differences for high heat flux (q, = 9.0 x 104 W/m 2) 
[figure 9(b)]. The difference can be attributed to the effects of the flow along the heated surface 
which was not considered in the analysis. Flow effects become significant at high heat flux for two 
reasons: first, the heated surface temperature recovery becomes faster, so that the liquid 
temperature rise in a thermal boundary layer becomes faster; and second, the experiment is carried 
out under the condition that the liquid without the thermal boundary layer suddenly flows into 
the heated surface. If the heated surface is sufficiently long and a thermal boundary layer develops, 
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Figure 8. Amount of heat transported by evaporation vs dimensionless residence time, ,,. 
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Figure 9. Comparison of  temperature changes calculated and measured during one cycle at (a) a low heat 
flux of qw = 1.3 x 104 w/m 2 and (b) a high heat flux of q.  = 9.0 x 104 w/m ~. 

the flow effect becomes small compared with that on the short heated surface. The agreement for 
this case can be expected to be good at high heat fluxes. 

Incidentally, a velocity boundary layer thickness should also relate closely to the heat transfer 
enhancement since the actual velocity of the liquid flowing over the heated surface plays an essential 
role in the sensible heat transport. According to Rohsenow & Choi (1963), the boundary layer 
develops up to about 90% of the fully-developed boundary layer at a distance of 0.15 m from the 
entrance of the channel to the heated surface, on the assumption that the flow is laminar and its 
velocity is 0.5 m/s. A consideration of the flow effect in the analysis of sensible heat transport would 
make the present analysis complete. 

4.2. Time-averaged heat transfer coefficient 
Figure 10 shows the experimental ~ x ~ 0 / 2  (/b = 0.02 and 0.01 m) (Monde & Kusuda 1988) 

plotted against So/x/~o, calculated using So -- 71.7/~m. The solid lines are the same as those in 
figure 6, and are shown here to compare the theoretical and experimental results. The dashed line 
is the relation 

/;x/~00 / So - '  So 
= 1.65 x [ , 6 = ~ > 0.92 [28] 

 ,/aro/ ,/Woo 
when the thickness o f  the liquid film So = 71.7/~m is utilized, 

/ ~ 0 0  = 2.3 x 104x/~00, aTo < 6 x 10 -9  m 2. [29] 
2 

Equation [29] was experimentally determined by Monde et al. (1988) for the range 
aTo < 6 x 10 -9 m 2. It should be noted that the situation indicated by [28] corresponds to the limiting 
state for ~ = 1. From figure 10, the data of h" become higher than the values predicted for ~ = 1; 
this fact is attributed to the influence of the flow. It is interesting to note that most heat transfer 
data beyond a = 1 fall on the dashed line given by [28]. 

It seems to be rather difficult to understand from figure 10 the effect of the bubble period on 
the heat transfer enhancement, since the residence time, a, is a function of To, as is given by [25]. 
Figure 11, therefore shows the typical data, h, plotted against the period, To. The solid lines are 
the theoretical results for lb=0 .01m at heat fluxes of qw= 1.3x 104 and 9 .0x  l & W / m  2, 
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Figure 10. Dimensionless heat transfer,/~V/-~0/)., as a function of dimensionless thickness, 6 = S o / ~ o ,  
for the experimental data. 

respectively. The fact that both the predicted values are nearly equal in spite of the different heat 
fluxes, is due to neglecting the flow. The two dashed lines are the theoretical results for So = 50 #m, 
lb=0.01 m and for So= 100/~m, lb=0.01M at a heat flux of q , =  1.3 x 10aW/m 2, shown for 
reference. The thin solid line is the theoretical result for ~ = 0. Besides, it may be of interest to 
compare the heat transfer coefficient obtained with those calculated for a laminar flow in a channel 
on the assumption that the liquid flows at the same velocity as the rising bubble does. Equation 
[30] is the solution, derived using an approximate integral method, for forced convection laminar 
flow on a fiat plate with a constant heat flux: 

hx 0.418 (v) ' /3 F x 
. . . .  I/3 ' [30] 

where the velocity boundary layer begins growing at x = 0 and the distance x0 is the unheated 
length. The . . . .  line calculated from [30], gives the local heat transfer coefficients for the. rising 
velocity of the bubble length, Ib = 0.01 m, corresponding to the period at the center of the heated 
surface with the unheated length, x0 = 0.15 m, at which the heated surface is mounted in the 
experiment (Monde & Kusuda 1988). The - - - - -  line, for reference, is twice as large as the predicted 
value. 
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Figure 11. Comparison of the heat transfer coefficients (predicted and measured). 
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It is found from figure 11 that the experimental data at low heat fluxes are predicted well, while 
the data at high heat fluxes are about twice as large as the predicted value. This reason is also due 
to the fact that the flow along the heated surface plays an important role in the heat transfer. 
Although the agreement becomes less satisfactory for high heat fluxes, the improvement for high 
heat flux would be expected by taking account of the flow effect, i.e. the convective term, v (c~T/c~y), 
which is related closely to both the thermal and the velocity boundary layers. It may be necessary 
to say that a similar tendency is obtained for lb = 0.03 m. 

Figure 11 shows that the difference between the value o f / /  for q = 9 x 104 W/m 2 and the 
predicted values decreases with a decrease in the period. This fact is due to the decrease in the 
thermal boundary layer thickness, the growth of which is proportional to x/~T0, i.e. the thermal 
boundary layer is hard to be subject to the flow effects. 

It should be noted finally that the heat transfer coefficients obtained are more than three times 
higher than those predicted by [30] and the heat transfer enhancement due to the bubble passage 
may be promising. 

5. CONCLUSIONS 

1. A theoretical study has been made of heat transfer enhancement due to bubbles passing through 
a narrow vertical channel. The results have been compared with existing experimental data. 

2. The heat transfer enhancement due to the bubble passage is predicted well in the low heat flux 
region; agreement becomes less satisfactory for high heat fluxes due to the sensible heat transport 
added by the flow. 
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